Practice Test

State the vertical shift, amplitude, period, and phase shift of each function. Then graph the function.

1.
$$y = \frac{2}{3} \sin 2\theta + 5$$

2. $y = 4 \cos \left[\frac{1}{2}(\theta + 30^{\circ})\right] - 1$
3. $y = 7 \cos \left[4\left(\theta + \frac{\pi}{6}\right)\right]$

4. AUTOMOTIVE The pistons in a car oscillate according to a sine function. The amplitude of the oscillation is 2, the period is 6π , and the phase shift is $\frac{\pi}{2}$ to the left. Write a formula to model the position of the piston, *p*, at time *t* seconds. Graph the equation.

Find the value of each expression.

5. $\tan \theta$, if $\sin \theta = \frac{1}{2}$; $90^{\circ} < \theta < 180^{\circ}$ 6. $\sec \theta$, if $\cot \theta = \frac{3}{4}$; $180^{\circ} < \theta < 270^{\circ}$ 7. $\csc \theta$, if $\sec \theta = \frac{\sqrt{5}}{2}$; $270^{\circ} < \theta < 360^{\circ}$

Verify that each of the following is an identity.

- 8. $(\sin \theta \cos \theta)^2 = 1 \sin 2\theta$
- 9. $\frac{\cos\theta}{1-\sin^2\theta} = \sec\theta$
- **10.** $\frac{\sec \theta}{\sin \theta} \frac{\sin \theta}{\cos \theta} = \cot \theta$

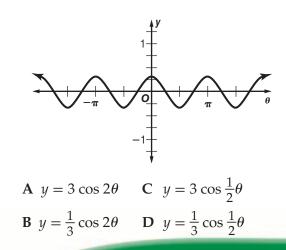
11.
$$\frac{1 + \tan^2 \theta}{\cos^2 \theta} = \sec^4 \theta$$

12. RACING Race tracks are designed based on the average car velocity so that the angle of the track prevents sliding in the curves. The equation for the banking angle is $\tan \theta = \frac{v^2}{gr}$ where *v* is velocity, *g* is gravity, and *r* is the radius of the curve. Write an equivalent expression using sec θ and csc θ .

Find the exact value of each expression.

13. cos 165°	14. sin 255°
15. sin (–225°)	16. cos 480°
17. cos 67.5°	18. sin 75°

Solve each equation for all values of θ if θ is measured in degrees.


19. $\sec \theta = 1 + \tan \theta$ **20.** $\cos 2\theta = \cos \theta$ **21.** $\cos 2\theta + \sin \theta = 1$ **22.** $\sin \theta = \tan \theta$

GOLF For Exercises 23 and 24, use the following information.

A golf ball leaves the club with an initial velocity of 100 feet per second. The distance the ball travels is found by the formula

 $d = \frac{v_0^2}{g} \sin 2\theta$, where v_0 is the initial velocity, *g* is the acceleration due to gravity, and θ is the measurement of the angle that the path of the ball makes with the ground. The acceleration due to gravity is 32 feet per second squared.

- **23.** Find the distance that the ball travels if the angle between the path of the ball and the ground measures 60°.
- **24.** If a ball travels 312.5 feet, what was the angle the path of the ball made with the ground to the nearest degree?
- **25. MULTIPLE CHOICE** Identify the equation of the graphed function.

Chapter Test at algebra2.com